

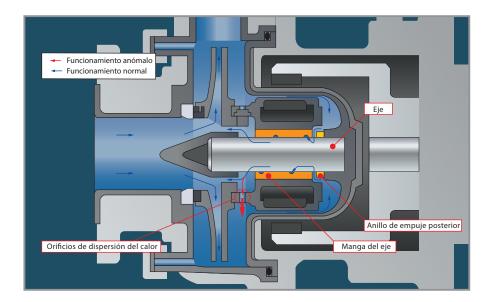

BOMBAS DE ACCIONAMIENTO MAGNÉTICO DE IWAKI







## Mayor resistencia a condiciones operativas difíciles


El sistema sin contacto de eficacia probada y la estructura autorradiante de la manga del eje mejoran significativamente la tolerancia a condiciones de funcionamiento en seco y aspiración deficiente.

## Sistema sin contacto

A diferencia de las bombas de accionamiento magnético convencionales, la serie MXM se ha concebido para evitar el contacto entre la superficie de la manga del eje y del anillo de empuje posterior, incluso durante el funcionamiento en seco. Al evitar este tipo de contacto, el anillo de empuje posterior reduce al mínimo la generación de calor para que no se derritan las piezas de plástico.

## Estructura autorradiante (PAT.)

A través de los orificios de dispersión del calor incluidos en las partes fijas del impulsor y la cápsula magnética, el líquido presente alrededor del eje y de la manga del eje se ve forzado a circular con el objetivo de reducir de forma efectiva el calor generado por el deslizamiento. De este modo, se evitan la deformación térmica y la fundición de los materiales.



.

# Bombas de accionamiento magnético con un excelente equilibrio entre características y rendimiento

The MXM series of pumps have now been added to the line-up of lwaki's magnetic drive process pumps, which have earned high acclaim and the trust of users all around the world. The new MXM series feature an excellent balance of the characteristics required of chemical pumps, including corrosion resistance, durability and safety. They employ a non-contact, self-radiating bearing structure to better withstand difficult operating conditions. The advent of the MXM series has further expanded the array of choices offered by lwaki's process magnetic drive pumps.

#### Excelente resistencia a la corrosión

La serie MXM utiliza materiales anticorrosivos óptimos como ETFE reforzado con fibra de carbono (CFRETFE), carbono y cerámica de alta calidad para las piezas que entran en contacto con el líquido.

Es posible elegir el tamaño del impulsor y la potencia del motor que resulten más convenientes según las propiedades del líquido necesario.



Impulsor + Cápsula magnética



Eje + Manga del eje

#### Estructura resistente

Las bombas disponen de un blindaje externo de hierro fundido dúctil con una alta resistencia que permite su uso en aplicaciones de procesos con productos químicos de gran rendimiento. Nuestra original estructura (patente en curso) ha aumentado de manera radical el desempeño del sellado entre los cuerpos delantero y posterior, lo que ofrece una gran fabilidad



Cubierta + Cuerpo delantero

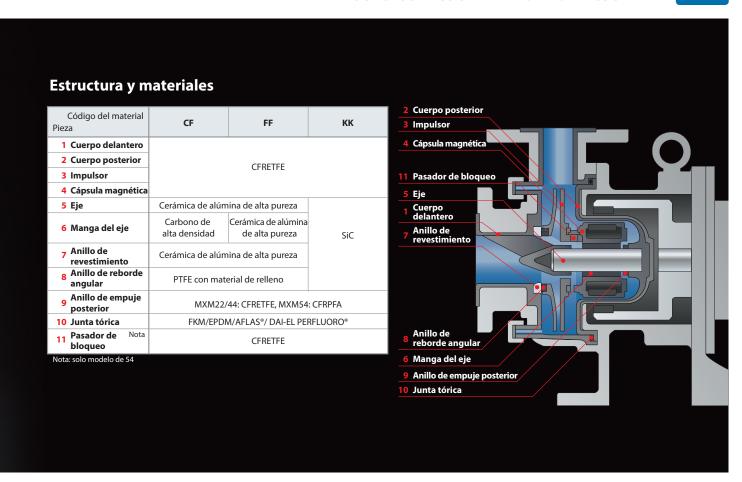
# **Mayor seguridad**

El cuerpo posterior de la serie MXM presenta una exclusiva forma diseñada para evitar la concentración de las tensiones. Así, aumenta la resistencia a la presión de la bomba y la resistencia mecánica del apoyo del eje. El modelo de altas temperaturas emplea una estructura doble que cuenta con una cubierta de FRP en el cuerpo posterior. Además de aumentar la resistencia de la bomba a la presión, el sistema de doble contención mejora la seguridad al evitar las fugas de líquido

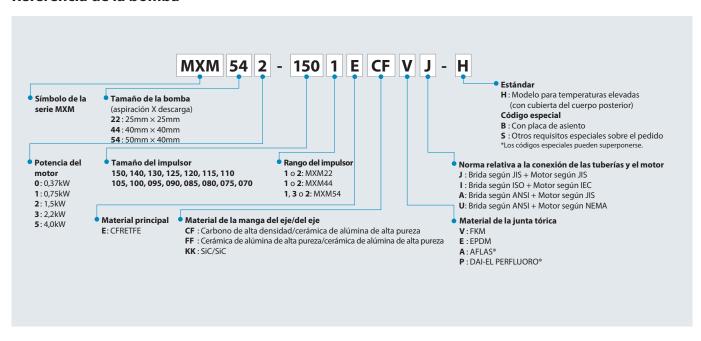
en caso de que se produzcan daños imprevistos en el cuerpo posterior.



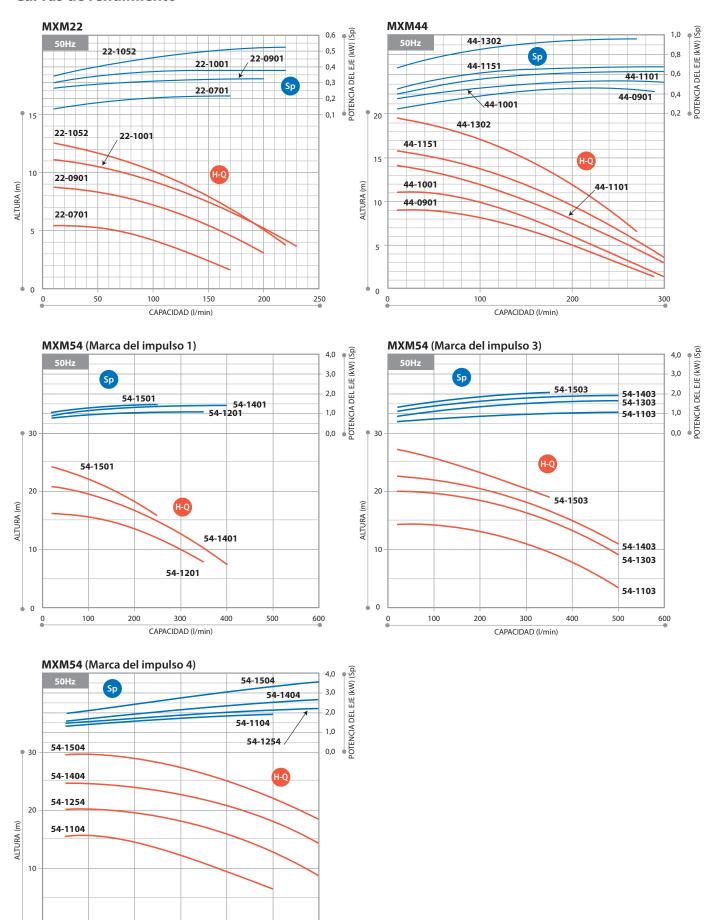
Cuerpo posterior + Cubierta del cuerpo posterior (opcional)







# **Especificaciones** (50Hz)

| Modelo                       | Tamaño de la bomba<br>Aspiración X descarga | Tamaño del impulsor | Capacidad<br>l/min | Altura de elevación<br>m |  |
|------------------------------|---------------------------------------------|---------------------|--------------------|--------------------------|--|
|                              |                                             | 100                 | 150                | 7,5                      |  |
| MXM22 (rango del impulsor 1) | 25mm × 25mm                                 | 090                 | 150                | 5,5                      |  |
|                              |                                             | 070                 | 150                | 2,5                      |  |
| MXM22 (rango del impulsor 2) |                                             | 105                 | 150                | 8                        |  |
|                              |                                             | 115                 | 200                | 9,5                      |  |
| MXM44 (rango del impulsor 1) |                                             | 110                 | 200                | 8                        |  |
| MXM44 (rango del impulsor 1) | 40mm × 40mm                                 | 100                 | 200                | 6                        |  |
|                              |                                             | 090                 | 200                | 5                        |  |
| MXM44 (rango del impulsor 2) |                                             | 130                 | 200                | 12                       |  |
|                              |                                             | 150                 | 200                | 18,5                     |  |
| MXM54 (rango del impulsor 1) |                                             | 140                 | 200                | 17                       |  |
|                              |                                             | 120                 | 200                | 13,5                     |  |
|                              |                                             | 150                 | 300                | 20                       |  |
| MXM54 (rango del impulsor 3) | 50mm × 40mm                                 | 140                 | 300                | 18,5                     |  |
| WAM54 (rango der impulsor 5) | 30111111 × 40111111                         | 130                 | 300                | 16,5                     |  |
|                              |                                             | 110                 | 300                | 10,5                     |  |
|                              |                                             | 150                 | 400                | 25                       |  |
| MXM54 (rango del impulsor 4) |                                             | 140                 | 400                | 20,5                     |  |
| (rango dei impulsor 4)       |                                             | 125                 | 400                | 15,5                     |  |
|                              |                                             | 110                 | 400                | 9,5                      |  |

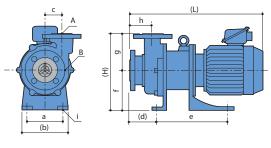

Notal: Rango de temperatura del líquido
Estándar: -10 a 90 °C Modelo para temperaturas elevadas (con cubierta del cuerpo posterior): -10 a 105 °C (10 a 105 °C si se utiliza una junta tórica de AFLAS\*)
Nota2: Presión de funcionamiento máx.
Estándar: MXM22: 0,2 MPa, MXM44: 0,3 MPa, MXM54: 0,45 MPa Modelo para temperaturas elevadas (con cubierta del cuerpo posterior): 0,7 MPa

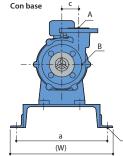


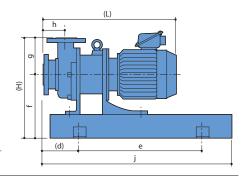
## Referencia de la bomba



# **Curvas de rendimiento**





CAPACIDAD (I/min)


<sup>·</sup> Las curvas de potencia del eje mostradas anteriormente se han calculado mediante nuestro motor de prueba estándar. Póngase en contacto con nosotros para obtener más detalles.

# **Dimensiones**

Sin base







Sin base

| Modelo   | (H) | (L)        | Α    | В   | а   | (b) | с  | (d) | е   | f   | g   | h   | i     |
|----------|-----|------------|------|-----|-----|-----|----|-----|-----|-----|-----|-----|-------|
| MXM220-H | 237 | 475<br>470 | 25A  | 25A | 110 | 150 | 51 | 95  | 165 | 115 | 122 | 88  | 4-ø12 |
| MXM221-H | 237 |            | 25A  |     |     |     |    |     |     |     |     |     |       |
| MXM441-H | 275 | 498        | 40.4 | 40A | 130 | 170 | 58 | 113 | 250 | 135 | 140 | 106 | 4-ø14 |
| MXM442-H | 2/3 | 535        | 40A  |     |     |     |    |     |     |     |     |     |       |
| MXM542-H |     | 467        |      |     | 140 | 180 | 65 | 106 | 275 | 155 | 140 | 87  | 4-ø14 |
| MXM543-H | 295 | 489        | 40A  | 50A |     |     |    |     |     |     |     |     |       |
| MXM545-H |     | 594        |      |     |     |     |    |     |     |     |     |     |       |

| Con base |        |       |     |     |     |     |    |     |     |     |     |     |       |     |
|----------|--------|-------|-----|-----|-----|-----|----|-----|-----|-----|-----|-----|-------|-----|
| Modelo   | (W)    | (H)   | (L) | Α   | В   | a   | С  | d   | e   | f   | g   | h   | i     | j   |
| MXM220-H | 300 31 | 317   | 475 | 25A | 25A | 250 | 51 | 130 | 220 | 195 | 122 | 88  | 4-ø19 | 450 |
| MXM221-H | 300    | 0 317 | 470 |     |     |     |    |     |     |     |     |     |       |     |
| MXM441-H | 350    | 365   | 498 | 40A | 40A | 300 | 58 | 130 | 260 | 225 | 140 | 106 | 4-ø19 | 489 |
| MXM442-H | 330    | 305   | 535 |     |     |     |    |     |     |     |     |     |       |     |
| MXM542-H |        |       | 467 |     |     |     |    |     |     |     |     |     |       |     |
| MXM543-H | 400    | 385   | 489 | 40A | 50A | 350 | 65 | 140 | 480 | 245 | 140 | 87  | 4-ø19 | 735 |
| MXM545-H |        |       | 594 |     |     |     |    |     |     |     |     |     |       |     |

# Notas para elegir el producto

- (1) Las curvas de rendimiento del presente catálogo representan los datos medidos utilizando agua limpia a 20 °C.
- (2) Elija el modelo de bomba adecuado para el peso del líquido. Asegúrese de que la potencia del motor sea un 10 % más alta que la que se necesita en teoría.

Potencia del eje (Sp)  $\times$  peso del líquido  $\times$  1,1 < potencia del motor

(Nota) La potencia del eje (Sp) aumenta de manera proporcional al peso del líquido. Cuanto mayor sea la viscosidad, mayor será la potencia del eje y menor serán la altura de elevación y la descarga. Será necesario ajustar la potencia y el rendimiento.

- (3) Ninguna bomba de accionamiento neumático puede funcionar constantemente en el modo cerrado. Asegúrese de mantener el caudal mínimo.
  - Caudal mínimo

 $\begin{array}{lll} \text{MXM22/44} & \text{ : 10 l/min.} \\ \text{MXM54} & \text{Rango del impulsor } 1,2 \text{ y } 3 & \text{ : 20 l/min.} \\ \text{Rango del impulsor } 4 & \text{ : 50 l/min.} \end{array}$ 

(4) A continuación, se describe la resistencia de la bomba a la presión.

Asegúrese de que la presión interna de la bomba no supere el valor especificado abajo.

• Modelo estándar de -10 °C a 90 °C (sin cubierta del cuerpo posterior)

MXM22: 0,2 MPa, MXM44: 0,3 MPa, MXM54: 0,45 MPa

- Modelo para temperaturas elevadas de -10 °C a 105 °C (con cubierta del cuerpo posterior)
   : 0.7MPa
- (5) Modelos de material FF
  - El líquido debe ser de 1 mPa·s (cP) como mínimo.
  - El rendimiento de alta calidad varía ligeramente con respecto a los modelos de CF/KK. Si necesita obtener más información, póngase en contacto con nosotros.
- (6) No se recomienda hacer uso, de manera prolongada y deliberada, del funcionamiento en seco o con aire atrapado.
  - El modelo de CF tiene cierto nivel de tolerancia al funcionamiento en seco y con aire atrapado en el líquido.
  - El modelo de KK tiene el mismo nivel de tolerancia que el de CF respecto al funcionamiento con aire atrapado en el líquido, pero no admite el funcionamiento en seco.
  - El modelo de FF no puede funcionar en seco ni con aire atrapado.

# **Accesorios opcionales**

#### Protector de bombas de Iwaki de la serie DRN

#### Detecta condiciones operativas poco habituales para la bomba, como el funcionamiento en seco y la sobrecarga

El modelo DRN protege los equipos (así como las bombas) frente a los daños. Reduce al mínimo los tiempos de inactividad durante la producción.

Identifica las posibles causas de las alarmas para que puedan investigarse y solucionarse los problemas

Entrada múltiple Dos entradas analógicas, una digital, una entrada de temperatura y una entrada de corriente

Funcionamiento sencillo Equipado con un modo de configuración sencillo para recordar

el estado operativo y ajustar los valores de los límites inferior/ superior, así como un modo de configuración automática

Gráfico de barras Indicación visible del estado operativo actual

Capacidad de registro de datos Función de registro de datos para una programación de tareas de

mantenimiento preventivas

Comunicación Capacidad de comunicación externa RS485



| Especincaciones                         |                            |             |  |  |  |  |  |  |  |
|-----------------------------------------|----------------------------|-------------|--|--|--|--|--|--|--|
| Modelo                                  | DRN-01                     | DRN-02      |  |  |  |  |  |  |  |
| Rango de intensidad                     | 0.5-30.00 A                | 5.0-200.0 A |  |  |  |  |  |  |  |
| Tensión de alimentación de<br>la unidad | 100-240 V CA 50/60Hz 10 VA |             |  |  |  |  |  |  |  |
| Temperatura de funcionamiento           | 0-40°C                     |             |  |  |  |  |  |  |  |
| Humedad de funcionamiento               | 35-85%HR                   |             |  |  |  |  |  |  |  |

# Serie de bombas de proceso de accionamiento magnético de IWAKI

#### SERIE MDW

La bomba de accionamiento magnético de tipo fluoroplástico



### Especificaciones

- Capacidad de descarga máx.: 300 m³/h
- · Altura de elevación máx.: 98 m
- Materiales principales: ETFE, PFA
- Rango de temperatura del líquido: -10 a 105 °C(ETFE) -10 a 120 °C(PFA)

#### SERIE MDE

La bomba de accionamiento magnético de gran tamaño para procesos



#### Especificaciones

- · Capacidad de descarga máx.: 240 m³/h
- · Altura de elevación máx.: 55 m
- Materiales principales: ETFE, PFA
- Rango de temperatura del líquido: 0 a 100 °C

## SERIE MDM

Especificaciones

Bomba de proceso de accionamiento magnético con capacidad de funcionamiento en seco

· Capacidad de descarga máx.: 84 m³/h

• Materiales principales: CFRETFE, PFA

• Rango de temperatura del líquido: -20 a 105 °C (CFRETFE)

· Altura de elevación máx.: 74 m



-20 a 150 °C (PFA)

# SERIE MX/MX-F

Soporta condiciones operativas difíciles y ofrece una alta eficacia



#### Especificaciones

- Capacidad de descarga máx.: 30,6 m³/h
- · Altura de elevación máx.: 35 m
- Materiales principales: GFRPP, CFRETFE
- Rango de temperatura del líquido: 0 a 80 °C

# SERIE SMX/SMX-F

Versátil bomba de accionamiento magnético de autocebado con una durabilidad mejorada en condiciones de funcionamiento

anómalas

#### Especificaciones

- Capacidad de descarga máx.: 26,4 m<sup>3</sup>/h
- · Altura de elevación máx.: 25,5 m
- Materiales principales: GFRPP, CFRETFE
- Rango de temperatura del líquido: 0 a 80 °C



# https://www.iwaki.es

IWAKI Europe Branch Spain, Parc de Negocis Mas Blau, Carrer d'Osona, 2, E-08820 El Prat de Llobregat - Barcelona TEL: +34-934/741-638 FAX: +34-934/741-638 E-Mail: sales@iwaki.de

Precauciones para un uso seguro:

Las bombas pueden diferir de las fotografías en la realidad. Las especificaciones y las dimensiones pueden sufrir alteraciones sin previo aviso. Para obtener más información, póngase en contacto con nosotros. Antes de utilizar la bomba, lea el manual de instrucciones con atención para utilizar el producto de manera correcta.

Consideraciones jurídicas en relación con las exportaciones

Nuestros productos o piezas de productos se engloban dentro de la categoría de bienes contenidos en la lista del régimen internacional de control de las exportaciones. Recuerde que es posible que se exigia la presentación de una licencia de exportación durante la exportación de productos de conformidad con los reglamentos de control de las exportaciones de los distintos países.

Se prohíbe categóricamente la publicación y la copia de información de este catálogo sin permiso.